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INTRODUCTION

In a paper presented at a flight flutter testing symposium in 1958 Houbolt and Rainey! proposed
a subcritical response method for flutter onset prediction that can be used either with sinusoidally vary-
ing forced excitation (shaker) or randomly varying forced excitation (turbulence). The method is suit-
able for both flight and wind-tunnel flutter testing. The analytical foundation of this method is straight
forward and simply requires the measurement of the amplitude of the response in the structural mode
important to flutter. The reciprocal of these amplitude measurements are plotted against a flow parame-
ter such as density as flutter is being approached and the resulting curve extrapolated to the flutter con-
dition which occurs when the amplitude reciprocal equals zero. The method predicts a linear trend of
amplitude reciprocal with flow parameter. Seventeen years later in their summary report of an active
flutter suppression study, Sandford, Abel, and Gray? presented some results using a subcritical re-
sponse method they called the Peak-Hold Method. They noted that the Peak-Hold Method is similar to
the Houbolt-Rainey Method but did not offer any elaboration. As far as can be determined no one has
made an explicit connection between the two methods, even though the Peak-Hold Method has become
a standard method used during flutter testing in the NASA Langley Transonic Dynamics Tunnel? which
is a major wind-tunnel facility in the United States for aeroelastic testing.4

The purpose of the present paper is to examine the relationship between these two methods.
Although both methods can be applied to systems that are being either excited by sinusoidally varying
forces such as thosed produced by a shaker or by randomly varying forces such as those produced by
flow turbulence, the present discussion will focus on random excitation. There is no loss of
generalization by focusing on random excitation. In particular, the physical system that will be consid-
ered in discussing the two methods is a wind-tunnel flutter-model wing that is being excited only by
wind-tunnel turbulence. Neither method requires knowledge of the magnitude of the exciting force.
Both methods require the determination of the response of the system, amplitude of response in the
mode important to flutter, but the exact values of the response are not required by either method.
Consistent measurements of quantities proportional to the amplitude are all that are needed.

Furthermore, neither method can be used to determine the damping of the wing.

, HOUBOLT-RAINEY (H-R) METHOD
The analytical development of the Houbolt-Rainey Method!, hereafter referred to as the H-R
Method, is based on an assumed mode solution of the system of differential equations that describe the



flutter behavior of a wing that is excited by external forces such as a shaker or turbulence. (What is
called turbulence here is referred to as gusts in ref. 1.) They developed a relatively simple expression
for the amplitude of vibration of the surface in the structural mode important to flutter. This expression
with both shaker and turbulence forces present is
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where Q is a generalized force, A is a generalized aerodynamic force that is a function of Mach number
and reduced frequency, V is the fluid velocity, p is the fluid density, and the subscripts f, s, and t refer

to flutter, shaker, and turbulence, respectively.

By inverting eq. 1 and separating the shaker and turbulence terms the following relationships
are obtained where the vertical bars on either side of a symbol are used to denote the magnitude of the

variable.
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Note that for the shaker only case (eq. 2) the amplitude is predicted to vary linearly with density
p as flutter is approached, whereas for the turbulence only case (eq. 3) the amplitude is predicted to

vary linearly with the reciprocal of the density. At flutter the magnitude of the amplitude lal would be

expected to be very large so the term él would approach zero. The relationships developed in ref.1 as-

sumed that the flow velocity is held constant while the density is varied as flutter is being approached.
Relationships similar to eqs. 2 and 3 hold, however, if both the velocity and density are varying simul-

taneously, that is, the dynamic pressure q = ész is being changed. In many instances this would
likely be the case so it would be convenient to examine the variations of jal With the dynamic pressure

(shaker case) or the reciprocal of the dynamic pressure (turbulence case). Of course, when q is being
varied the trends may not be exactly linear because the Mach number and the reduced frequency are
varying. In the neighborhood of flutter, however, it would be expected that the trends would be nearly
lincar. Furthermore, it should be noted that the presence of significant buffeting flows over the wing

may also cause the trend to deviate from being linear.



These relationships, egs. 1 and 2, provide a simple means to predict the flutter condition from
subcritical response measurements made during experiments when the wing is either excited by a
shaker or by flow turbulence. By measuring the dynamic response of the surface in the structural
mode important to flutter at several different subcritical flow conditions and then plotting the reciprocal
of these amplitude measurements versus the appropriate flow quantity, it is possible to extrapolate to the
flutter condition which is the flow condition at which the amplitude reciprocal becomes zero.

Some experimental results from applying this method are presented in ref. 1, and are repeated
here in figure 1. Results are shown for a varicty of wing configurations at subsonic and transonic
speeds. For these cases the method did accurately predict the flutter condition as long as the subcritical
response measurements were made within 20 percent of the flutter dynamic pressure. The amplitude
values needed by Houbolt and Rainey to apply the turbulence technique were determined by using auto-
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Figure 1. - Extrapolation to flutter onset condition using Houbolt-Rainey Method. (Ref. 1.)

spectra (power spectral densities) of the response measured during the wind-tunnel tests. Because the
autospectra units were amplitude squared/Hertz, they had to convert, in effect, each measured spectrum
into an amplitude spectrum to determine the amplitude in the mode important to flutter. An amplitude

autospectrum is a spectrum for which the value of the spectrum at each respective frequency represents



the mean square value of the response at that frequency. The units of this spectrum are simply ampli-
tude units squared, say, for example, in.2 The response amplitudes determined in this way are what

were used in ref. | to obtain the results presented in figure 1.

PEAK-HOLD METHOD

By the early 1970's it had become accepted practice during flutter testing in the Transonic
Dynamics Tunnel to use frequency analyzers to track response frequencies of models during the ap-
proach to flutter. Apparently Sandford had observed that there appeared to be a trend associated with
~ the amplitude of the spectral peaks, so his intuition led him to try what has become to be know as the
Peak-Hold Method. (The peak-hold function is built into most off-the-shelf transfer function analyz-
ers.) Following Sandford's lead other researchers have also used this method with varying degrees of
success.3-> Of course, no subcritical response flutter onset prediction method has yet been developed
that works accurately in all situations.

The basic measurement needed for applying this method is, like for the H-R Method, the ampli-
tude of the structural mode that is important to flutter. In this case, however, the needed amplitude in-
formation is obtained by using what is called a peak-hold spectrum. Although a peak-hold autospec-
trum (amplitude squared/Hertz) may be used, it is usually more convenient to used a peak-hold ampli-
tude spectrum, that is, a spectrum for which the ordinate values are the mean squares values of the re-
sponse amplitude. The use of an amplitude spectrum is appropriate because the response is limited to a
few discrete frequencies and is not broad band random noise. Next we will discuss some notions con-
cerning spectra, in particular, amplitude spectra and peak-hold spectra. The discussion is by no means
elegant, and is somewhat "schematic" in nature, but it should prove useful to readers who are not famil-
iar with spectral analysis. (There are many fine books available on time series analysis of random data.
See, for example, ref. 6.)

To aid in understanding a peak-hold spectrum let us consider a digital-signal analyzer with an
analysis bandwidth of N(Af) where N is an integer constant and Af is the frequency resolution.
Typically N would be of the order of several hundred. If, for example, N=200 and the frequency
bandwidth of interest was from zero to 50 Hertz, then the frequency resolution Af would be 0.25
Hertz. The spectrum is determined at N values of frequency, each value of frequency separated from
adjacent values of frequency by an amount Af. The signal is in effect passed through a series of N
"windows," or filters, that are Af wide and centered at the frequencies fy. The analyzer determines the
mean square value of the signal in each frequency window. The amplitude spectrum is the foundation
element of the peak-hold spectrum.

The process of determining a peak-hold spectrum proceeds as follows: An initial amplitude
spectrum of the wing response is calculated and its values stored in the analyzer memory. This spec-
trum and subsequent ones are obtained from very short time segments of the response so the spectrum



represents the variation of the response amplitude with frequency at an "instant” of time rather than
providing statistical information representing the overall random process. Each frequency window has
a unique location in analyzer memory. In addition the spectrum is displayed on an oscilloscope screen
for visual monitoring. A second amplitude spectrum is then determined and its values compared with
the initial spectrum stored in memory. The memory is updated at each frequency window for which the
value of the new spectrum is larger than the value stored in memory. This process of determining
spectra and comparing new values with stored values and displaying the results is repeated until the
spectrum stored in memory is not being changed as determined by visual observation of the display on
the oscilloscope screen. Experience has shown that the oscilloscope screen will typically show that the
spectrum changesrlr'épidly at the beginni}lg of the process (perhaps the first 30 seconds or so) and then
appears to remain unchanged as time passes. Once the spectrum has been observed to converge, the
spectrum calculation-comparing process is stopped. The spectrum that is stored in memory now is the
peak-hold spectrum and represents the maximum mean square amplitude of the wing response at each
of the N frequencies that occurred during the time that the spectra were being determined. These peak
values are held in memory throughout this process, hence the name, peak-hold.

In applying the Peak-Hold Method to flutter onset prediction this process is repeated at several
different flow conditions. It is has become standard practice to plot the reciprocal of the amplitude of
the structural mode important to flutter versus dynamic pressure and then extrapolate this curve to pre-
dict the flutter onset condition. The H-R Method suggests that examining the é trend with the recipro-

cal of dynamic pressure would be a better choice because the predicted trend is linear. If the trend is in-
deed linear with the reciprocal of the dynamic pressure, then the trend is concave with dynamic pres-
sure. Obviously, it is easier to extrapolate a linear trend than it is to extrapolate a non-linear trend. This
is illustrated by the data presented in figures 2 and 3. The data in these figures were obtained during the
flutter tests described in ref. 7. The model was a 45°-sweep delta wing. The measured flutter dynamic
pressure for this model was about 46 psf. Presented in figure 2 is the variation with dynamic pressure
of the measured reciprocal of the response amplitude in the mode that was important to flutter. The re-
sponse amplitude is the square root of the value of the peak in the spectrum that oceurs at the frequency
of the structural model important to flutter. Therefore, lal is the root mean square of the amplitude.
These data have been fitted with two curves, a linear least squares fit and a second degree polynominal
fit. The second degree curve fits the data better as would be expected if the trend of the amplitude is in-
deed linear with the reciprocal of q. The linear fit, however, gave a projection of the tlutter dynamic
pressure, 47 psf, that is closer to the experimental value, 46 psf. An important point to be made
here is that it is obvious that small changes in the second degree fit could make large changes in the
flutter onset prediction. Presented in figure 3 is the variation of the same amplitude reciprocal with the

reciprocal of the dynamic pressure. In this case the linear curve provides an excellent fit to the
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Figure 2. - Variation of the reciprocal of response amplitude with dynamic pressure.

data. The predicted flutter dynamic pressure, 51 psf, is about ten percent higher than the experimental
value, 46 psf. The second degree polynomial fit shown in this figure is almost the same as the linear

fit. Data of the type shown in figures 2 and 3, which are not untypical of wind-tunnel model subcritical
flutter results, indicate that it is easier to extrapolate the linear curve in figure 3 than it is to extrapolate
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Figure 3. - Variation of the reciprocal of response amplitude with the reciprocal of dynamic
pressure.
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the second degree curve in figure 2. It is suggested, therefore, that in future applications amplitude
trends with the reciprocal of the dynamic pressure be used rather than trends with dynamic pressure.

COMPARISON OF H-R AND PEAK-HOLD METHODS

It appears from the proceeding discussion that the only difference between the H-R Method and
the Peak-Hold Method is in the spectrum used to determine the amplitude. Houbolt and Rainey used a
classical autospectrum (power spectral density in amplitude squared/Hertz determined by analog means)
because that was the only capability that was available to them at the time they did their work. To ob-
tain the needed amplitude data they, in effect, converted the classical autospectra to an amplitude spec-
tra. (As a junior researcher who helped acquire some of the experimental data presented in ref. 1, the
author has personal knowledge that this was the case.) If they were doing their work today, they
would undoubtedly use amplitude spectra determined by digital means. One could argue, however, that
they might not choose to use peak-hold spectra. So the question of difference in spectra still exists. The
following discussion addresses this question.

For the sake of argument let us assume that the turbulence that is exciting the wing is a linear,
ergodic random process with zero mean value and a "nearly" normal probability distribution. A normal
probability distribution is shown in figure 4. This distribution is presented in terms of a variable which
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Figure 4. - Normal probability distribution function.




is the ratio of the response a to the standard deviation 6. These assumptions may appear to be restric-
tive, but they are in general representative of such physical processes. The notion of a "nearly” normal
probability distribution, however, is quite important to the following arguments so some clarification is
needed. Theoretically a process that has a normal probability distribution has a finite probability of ex-
ceeding any selected upper limit, no matter how large, and a finite probability of being less than any
selected lower limit, no matter how small. Natural processes, however, are generally bounded. The
dashed vertical lines in the figure are used to indicate upper and lower bounds. The dashed modifica-
tions to the normal probability distribution indicate how this function might change near these bounds.
The extreme values would be Ko and -K6 where K is a constant that is characteristics of the particular
random process. There are a variety of reason why physical systems have limiting values. Some of
these are nonlinear effects such as springs that harden when the deflection is increased beyond a cer-
tain value, pressures that cannot be lower than an absolute vacuum, work done that cannot exceed the
available energy, and motion of particles inside a container that cannot exceed the boundaries of the
vessel. Although bounded, many physical processes still exhibit characteristics of normal possesses
between their upper and lower limits. So, a process that has a "nearly" normal probability distribution
function is a process that generally exhibits many of the characteristics attributed to a normal process
except that it is a process that has both upper and lower limits. It is generally accepted that wind-tunnel
turbulence is a process that exhibits such characteristics.

If one were to determine an amplitude autospectrum of the response of the wing to wind-tunnel
turbulence over a sufficiently long period of time (typically 30 to 60 seconds in most applications), a
spectrum would be determined wherein each point in the spectrum is equal to the mean square value of
the response at each of the N frequencies. If this time is sufficiently long, then the spectrum represents
the characteristics of the complete random process and not just what is going on a an instant of time.
Thus, if the spectrum had a peak at frequency f,, the value of the spectrum at f; would be equal to the
mean square amplitude at that frequency. Here this value would be equal to the square of the standard
deviation ¢ at fp because the mean square value and the square of the standard deviation are the same
quantity for a process with zero mean value. It is important to understand that the standard deviation o
of that portion of the random response occurring at frequency fp is not the standard deviation of the to-
tal random process. If we were to determine a peak-hold amplitude spectrum, then a similar looking
spectrum would result. The amplitude autospectrum and the peak-hold spectrum would have peak val-
ues of amplitudes occurring at the same frequencies, but the magnitude of these amplitudes would be
different because the amplitudes of the peak-hold spectrum are maximum mean square values that occur
during the time that the spectra were being determined whereas the amplitudes of the autospectrum are
mean-square values representative of the entire random process. If the process did indeed have a nor-
mal probability distribution function then it would be probable for both extremely large and extremely
small values to exist and, therefore, the peak-hold spectra would not converge as it has been observed



to do. Indeed, it could not converge. Because of the upper and lower bounds that are exhibited by
physical systems and because the peak-hold spectrum process is conducted over a relatively long time,
it is highly probable that amplitude responses of the order of the extreme values will occur. Therefore,
the maximum response as obtained by the peak-hold spectra may be thought of as K202 values, that is,
mean square values that occur when the amplitude of response is near the extreme values. Thus, the
magnitudes of amplitude spectrum, which are 62 values, are related to the magnitudes of the peak-hold
spectrum, which are K262 values, by the constant multiplier K2. Because in applying either method the
absolute values of the response are not important, then there no need to know the value of K.
Therefore, there should be no difference in the results no matter which spectrum is used.

It is now clear that the Peak-Hold Method and the H-R Method are the same method. Because
there is an analytical foundation for the H-R Method, then there is an analytical foundation for the Peak-
Hold Method, verifying that Sandford's insight was very astute. So, the fact that the Peak-Hold
Method has proven to be a useful subcritical response techniques for flutter onset prediction is not just
fortuitous, it should be expected to be so, although like all subcritical methods, it will not be reliable in
all applications. Indeed, the Peak-Hold Method is not actually a "method." It is more precisely a par-
ticular means by which the data required to use the H-R Method are obtained. In recognition of that fact
it seems appropriate that in the future the designation Peak-Hold Method should be replaced with the
more appropriate designation Houbolt-Rainey Method.

CONCLUDING REMARKS

A subcritical response method for flutter onset prediction developed by Houbolt and Rainey in
1958 has been compared with the Peak-Hold Method which was apparently first applied to flutter onset
prediction by Sandford, Abel, and Gray in the early 1970's. The rational argument presented shows
that the two methods are not different methods, but are actually the same method. So, because there is
an analytical foundation for the Houbolt-Rainey Method, then there is the same analytical foundation for
the Peak-Hold Method. Therefore, it is not just fortuitous that the Peak-hold Method has proven to be a
useful tool in flutter onset prediction.

Further, it is suggested that, in applying the Peak-Hold Method in cases where turbulence is
used as the excitation force, the variation of the reciprocal of the response amplitude with the reciprocal
of the dynamic pressure be used to extrapolate to flutter onset rather than the variation with dynamic
pressure which is current practice because the linear trend which is predicted to occur for the former
case is easier to extrapolate to the flutter condition than the nonlinear trend predicted to occur for the
latter case. Finally, because the method is actually the Houbolt-Rainey Method, the Peak-Hold Method
being only a means by which the data needed to apply the Houbolt-Rainey Method are acquired, it is
suggested that the method be referred to in the future as the Houbolt-Rainey Method.
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